
10.5 Function of Continuous Random Variables: SISO

Reconsider the derived random variable Y = g(X).

Recall that we can find EY easily by (22):

EY = E [g(X)] =

∫
R
g(x)fX(x)dx.

However, there are cases when we have to evaluate probability
directly involving the random variable Y or find fY (y) directly.

Recall that for discrete random variables, it is easy to find pY (y)
by adding all pX(x) over all x such that g(x) = y:

pY (y) =
∑

x:g(x)=y

pX(x). (23)

For continuous random variables, it turns out that we can’t45 sim-
ply integrate the pdf of X to get the pdf of Y .

10.61. For Y = g(X), if you want to find fY (y), the following
two-step procedure will always work and is easy to remember:

(a) Find the cdf FY (y) = P [Y ≤ y].

(b) Compute the pdf from the cdf by “finding the derivative”
fY (y) = d

dyFY (y) (as described in 10.13).

10.62. Linear Transformation : Suppose Y = aX + b. Then,
the cdf of Y is given by

FY (y) = P [Y ≤ y] = P [aX + b ≤ y] =

 P
[
X ≤ y−b

a

]
, a > 0,

P
[
X ≥ y−b

a

]
, a < 0.

Now, by definition, we know that

P

[
X ≤ y − b

a

]
= FX

(
y − b
a

)
,

45When you applied Equation (23) to continuous random variables, what you would get is
0 = 0, which is true but not interesting nor useful.
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and

P

[
X ≥ y − b

a

]
= P

[
X >

y − b
a

]
+ P

[
X =

y − b
a

]
= 1− FX

(
y − b
a

)
+ P

[
X =

y − b
a

]
.

For continuous random variable, P
[
X = y−b

a

]
= 0. Hence,

FY (y) =

 FX

(
y−b
a

)
, a > 0,

1− FX
(
y−b
a

)
, a < 0.

Finally, fundamental theorem of calculus and chain rule gives

fY (y) =
d

dy
FY (y) =


1
afX

(
y−b
a

)
, a > 0,

−1
afX

(
y−b
a

)
, a < 0.

Note that we can further simplify the final formula by using the
| · | function:

fY (y) =
1

|a|fX
(
y − b
a

)
, a 6= 0. (24)

Graphically, to get the plots of fY , we compress fX horizontally
by a factor of a, scale it vertically by a factor of 1/|a|, and shift it
to the right by b.

Of course, if a = 0, then we get the uninteresting degenerated
random variable Y ≡ b.

Example 10.63. Suppose X ∼ E(λ). Let Y = 5X. Find fY (y).
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10.64. SupposeX ∼ N (m,σ2) and Y = aX+b for some constants
a and b. Then, we can use (24) to show that Y ∼ N (am+b, a2σ2).

Example 10.65. Amplitude modulation in certain communica-
tion systems can be accomplished using various nonlinear devices
such as a semiconductor diode. Suppose we model the nonlinear
device by the function Y = X2. If the input X is a continuous
random variable, find the density of the output Y = X2.

Example 10.66. Suppose X ∼ E(λ). Let Y = 1
X2 . Find fY (y).
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Exercise 10.67 (F2011). Suppose X is uniformly distributed on
the interval (1, 2). (X ∼ U(1, 2).) Let Y = 1

X2 .

(a) Find fY (y).

(b) Find EY .

Exercise 10.68 (F2011). Consider the function

g(x) =

{
x, x ≥ 0
−x, x < 0.

Suppose Y = g(X), where X ∼ U(−2, 2).
Remark: The function g operates like a full-wave rectifier in

that if a positive input voltage X is applied, the output is Y = X,
while if a negative input voltage X is applied, the output is Y =
−X.

(a) Find EY .

(b) Plot the cdf of Y .

(c) Find the pdf of Y
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Discrete Continuous
P [X ∈ B] =

∑
x∈B

pX(x)
∫
B

fX(x)dx

P [X = x] = pX(x) = F (x)− F (x−) 0

Interval prob.

PX ((a, b]) = F (b)− F (a)

PX ([a, b]) = F (b)− F
(
a−
)

PX ([a, b)) = F
(
b−
)
− F

(
a−
)

PX ((a, b)) = F
(
b−
)
− F (a)

PX ((a, b]) = PX ([a, b])

= PX ([a, b)) = PX ((a, b))

=

b∫
a

fX(x)dx = F (b)− F (a)

EX =
∑
x

xpX(x)
+∞∫
−∞

xfX(x)dx

For Y = g(X), pY (y) =
∑

x: g(x)=y

pX(x)

fY (y) =
d

dy
P [g(X) ≤ y] .

Alternatively,

fY (y) =
∑
k

fX(xk)

|g′(xk)|
,

xk are the real-valued roots
of the equation y = g(x).

For Y = g(X),
P [Y ∈ B] =

∑
x:g(x)∈B

pX(x)
∫

{x:g(x)∈B}
fX(x)dx

E [g(X)] =
∑
x

g(x)pX(x)
+∞∫
−∞

g(x)fX(x)dx

E [X2] =
∑
x

x2pX(x)
+∞∫
−∞

x2fX(x)dx

VarX =
∑
x

(x− EX)2pX(x)
+∞∫
−∞

(x− EX)2 fX(x)dx

Table 5: Important Formulas for Discrete and Continuous Random Variables
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